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Abstract

In this paper, we present a detailed derivation of the numerical method, Immersed Finite Element Method (IFEM),

for the solution of fluid-structure interaction problems. This method is developed based on the Immersed Boundary

(IB) method that was initiated by Peskin, with additional capabilities in handling nonuniform and independent meshes

and applying arbitrary boundary conditions on both fluid and solid domains. A higher order interpolation function is

adopted from one of the mesh-free methods, the Reproducing Kernel Particle Method (RKPM), which relieves the

uniformity constraint of fluid meshes. Two 2-D example problems are presented to illustrate the capabilities of the

algorithm. The accuracy in the numerical analysis demonstrates that the IFEM algorithm is a reliable and robust

numerical approach to solve fluid and deformable solid interactions.
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1. Introduction

Numerical investigations of fluid-structure interaction type problems require reliable numerical modeling and

simulation tools. An efficient and robust modeling technique is essential in studying complicated physical phenomena,

especially in the bioscience and biomedical fields. In the past few decades, numerous research efforts have been directed

to method development for fluid-structure interactions. Methods developed by Tezduyar et al. (1992), Johnson and

Texduyar (1995, 1997, 1999), are widely used in he simulation of fluid-particle and fluid-structure interactions, such as

the studies on parachute aerodynamics (Stein et al., 2001). The Arbitrary Lagrangian Eulerian (ALE) numerical

approach used by Hughes et al. (1981), Liu (1981), Liu and Ma (1982), Huerta and Liu (1988), Liu et al. (1988), Hu

et al. (2001), and Zhang et al. (2003), is another technique to accommodate the complicated fluid-structure interface.

Nevertheless, mesh updating or remeshing processes can be computationally expensive for the ALE algorithm.

Belytschko and Kennedy (1976), Belytschko (1980), Belytschko et al. (1980), Belytschko and Mullen (1981), Liu et al.

(1986) used numerical modeling to conduct fluid-structure impact analyses. Fortin and Glowinski (1983), Glowinski

et al. (1999, 2001) developed the Distributed Lagrange Multiplier method to study particulate flows. Recently,
e front matter r 2007 Published by Elsevier Ltd.
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Nomenclature

Fluid variables

fEXT external force applied

fFSI interaction force

r density

x grid position

v velocity

r Cauchy stress

Solid variables

fEXT;s external force applied

fFSI;s interaction force

rs density

xs current position

vs velocity

as acceleration

us displacement

Xs initial position

rs Cauchy stress
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researchers have applied the eXtended Finite Element Method (XFEM) to study fluid-structure interactions (Wagner

et al., 2001; Chessa et al., 2002; Chessa and Belytschko, 2003).

Among the computational methods developed for fluid-structure interactions, one of the most noticeable

contributions was from Peskin (1977) who developed the Immersed Boundary (IB) method to study the blood flow

around heart valves (Peskin, 1972, 1977; McCracken and Peskin, 1980; McQueen and Peskin, 1983; Peskin and

McQueen, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996; McQueen and Peskin, 2001). The mathematical formulation

of the IB method employs a mixture of Eulerian and Lagrangian descriptions for fluid and solid domains. The

interaction between fluid and structure is accomplished by distributing nodal forces and interpolating nodal velocities

between the Eulerian and Lagrangian domains through a smoothed approximation of the Dirac delta function. The

advantage of the IB method is that the fluid-structure interface is tracked automatically, which circumvents costly mesh

updating algorithms. One major obstacle of the IB method, however, is the assumption of the fiber-like immersed elastic

structure. This assumption restrains realistic modeling of structures that may require complicated constitutive laws and

an accurate representation of the finite volume they occupy within the fluid domain. Nevertheless, the IB method made

great contributions in the computational field; it paved the way for future scientists and engineers to employ and take

the numerical computing technology to a new level.

The goal of this paper is to present a detailed derivation and evaluation of a novel numerical algorithm, named

Immersed Finite Element Method (IFEM), for the solutions of fluid-structure interaction problems (Liu et al., 2004a, b;

Y. Liu, 2006; Gay et al., 2006; Liu et al., 2006). This algorithm is built based on the fundamental concept of IB method,

but eliminated the aforementioned drawbacks of the IB method by adopting features of the Extended Immersed

Boundary Method (EIBM) developed by Wang and Liu (2004). The IFEM also relies on the delta function properties

that are commonly used as the shape functions in mesh-free methods (Liu et al., 1996a, b; Li and Liu, 1996, 1999, 2002,

2004), such as the Reproducing Kernel Particle Method (Liu et al., 1995; Liu and Chen, 1995; Zhang et al., 2002). This

mesh-free delta function provides not only a higher order smoothness in the coupling procedures used between fluid and

solid domains, but also the ability to handle nonuniform fluid grids, which offers flexibility and robustness in the

numerical scheme. The basic concepts of the IFEM are illustrated in Zhang et al. (2004). However, it lacks the detailed

derivations and accuracy analysis of the method. This paper presents the complete formulation and comprehensive

explanations and analysis of this IFEM approach.

The outline of this paper is as follows. The equations of motion are first derived in Section 2 with detailed kinematics

and governing equations of fluid and solid, as well as the interaction interpolations. Two verification examples are

presented in Section 3. The first is a soft disk falling in a channel where the terminal velocity of the disk can be

compared with an analytical solution obtained for a rigid disk. The second example shows the motion of a thin leaflet

driven by a sinusoidal flow. Both examples are presented to demonstrate the main features, capabilities and efficiency of

the IFEM. Finally, conclusions are drawn in Section 4.
2. Equations of motion

The primary goal of this section is to derive and introduce the equations of motion for the Immersed Finite Element

Method algorithm. For brevity and clear understanding of the concept, we start the derivation from the principle of

virtual work or the weak form. The weak forms of the derived equations are equivalent to their strong forms if the weak

form solution is smooth enough to satisfy at least C0 continuity.
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Fig. 1. Computational domain decomposition.
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2.1. Kinematics

Let us consider a deformable structure that occupies a finite domain, Os, which is completely immersed in a fluid

domain Of , as illustrated in Fig. 1. The fluid and the solid together occupy the entire computational domain O, and they

intersect at a common interface GFSI, where FSI stands for fluid-structure interface (i.e., Of [ Os ¼ O and

Of \ Os ¼ GFSI). The FSI represents a line if O is a two-dimensional domain or a surface if O is in three-dimensions.

The interface GFSI coincides with the solid boundary Gs. The nomenclature involved can be partitioned into two

categories: one belongs to the solid and the other to the fluid. The notations associated with the solid have superscript s

to distinguish them from those of the fluid.
2.2. The overlapping domain

We first assume that the fluid exists everywhere in the domain, O. This assumption allows us to generate fluid and

solid meshes and solve fluid and solid equations independently, thus avoiding frequent mesh updating schemes required

to track the fluid-structure interface. In the IFEM, the solid immersed in the fluid domain occupies a physical space or

volume in the computational domain. Therefore, when the solid domain, Os, is constructed, it overlaps with the entire

domain O filled with fluid. Since both the solid and the ‘‘artificial’’ fluid coexist in the solid domain, Os, we name it the

‘‘overlapping domain’’, Ō, i.e., Os � Ō. This assumption may simplify the computations, but does not comply with

the actual physics. Therefore, this ‘‘artificial’’ fluid effect in the solid domain must be eliminated when formulating the

equations of motion.

Another important assumption is that the interface between the fluid and the solid must abide by the no-slip

boundary condition. Therefore, the solid structure follows wherever the artificial fluid goes, or it can be thought of as

the artificial fluid movement being induced by the forces generated by the solid.

To better illustrate and explain the equations to be formulated for this overlapping domain, we start by deriving the

principle of virtual work for the solid domain with a test function, dvs,

Z
Os

dvsi rs
dvsi
dt
� ssij;j � f EXT;s

i

� �
dO ¼ 0. (1)

The terms in the bracket of Eq. (1) describe the governing equation for the solid, where rs is the stress which is directly

related to the internal force. The term rsðdvsi=dtÞ, or rs €us, is the inertial force and fEXT;s is the applied external force,

such as gravity.
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We now want to rewrite Eq. (1) so that the terms related to the artificial fluid are included without contradicting

equilibrium. Assuming there is no external force applied to the fluid domain, Eq. (1) becomesZ
Os

dvsi ðr
s � rÞ

dvsi
dt
þ r

dvsi
dt
�ðssij;j � sij;jÞ � sij;j �f EXT;s

i

� �
dO ¼ 0. (2)

The added terms in the modified equation above are underlined. One can easily determine that they sum to zero. This

equation is rearranged so that the terms that have fluid properties can be grouped together to yieldZ
Os

dvsi ðr
s � rÞ

dvsi
dt
� ðssij;j � sij;jÞ � f EXT;s

i

� �
dOþ

Z
Ō
dvsi r

dvsi
dt
� sij;j

� �
dO|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

artificial fluid in Os

¼ 0. (3)

Eq. (3) now contains two terms. The first term is the work done by the solid in the solid domain subtracting the work

done by the artificial fluid. The second term represents the work done by the artificial fluid in this overlapping domain.

Notice that the equation is still in equilibrium.

We now define the interaction force as f FSI
i ¼ rðdvi=dtÞ � sij;j , and express it in its weak form using the test function,

dvi,

Z
Ō
dvi r

dvi

dt
� sij;j � f FSI

i

� �
dO ¼ 0. (4)

Noting that since Ō and Os are equivalent, the integration domain in Eq. (4) is changed to Ō. The solid velocity vs for

the artificial fluid in the overlapping domain can be replaced by the fluid velocity v in Eq. (4), since they are identical in

this domain based on the assumption of the no-slip boundary condition at the interface. Substituting Eq. (4) back into

Eq. (3) and rearranging the terms, we obtain the following weak form for the solid in the overlapping domain,

Z
Os

dvsi ðr
s � rÞ

dvsi
dt
� ðssij;j � sij;jÞ � f EXT;s

i

� �
dO ¼ �

Z
Os

dvsi f
FSI;s
i dO, (5)

where f FSI;s
i represents the interaction force acting on the solid.

Eqs. (4) and (5) complete the derivation for the governing equations of the solid and the artificial fluid. The next task

is to combine the artificial fluid in Ō described in Eq. (4) with the realistic or physical fluid in the fluid domain Of , so

that the fluid can be treated homogeneously in the entire computational domain O.

2.3. Fluid domain

The Navier-Stokes equations are used in the IFEM to describe a viscous Newtonian fluid. The variables are defined

using an Eulerian description. Here, the fluid is considered to be incompressible. Both Neumann and Dirichlet types of

boundaries can be applied at the fluid boundaries, though they may not overlap. The fluid domain, therefore, can be

flexible in shape and size. It gives the advantage of modeling realistic fluid domains wherever necessary. The real fluid

occupies the domain Of � OnOs, i.e., the entire computational domain minus the solid domain. The continuity and

momentum equations for the fluid in the fluid domain Of are

vi;i ¼ 0, (6a)

rðvi;t þ vjvi;jÞ ¼ sij;j þ f EXT
i , (6b)

where r is the Cauchy stress which is a function of pressure and shear stress,

sij;j ¼ �p;i þ mðvi;jj þ vj;ijÞ. (7)

If we assume that there is no external force applied to the fluid, i.e., fEXT ¼ 0, and express Eq. (6b) in its weak form

using the test function, dv, Eq. (6b) becomesZ
Of

dvi½rðvi;t þ vjvi;jÞ � sij;j �dO ¼ 0. (8)
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Now, combining the work done by the real fluid in Eq. (8) and the artificial fluid described in Eq. (4) with the expansion

of the total time derivative term, dvi=dt ¼ vi;t þ vjvi;j , we obtainZ
Ō
dvi½rðvi;t þ vjvi;jÞ � sij;j � f FSI

i �dO|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
artificial fluid in the overlapping domain; Ō; Eq: ð4Þ

þ

Z
Of

dvi½rðvi;t þ vjvi;jÞ � sij;j � dO|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
real fluid in the fluid domain; Of ; Eq: ð8Þ

¼ 0. (9)

The first integrand in Eq. (9) is the same as the momentum equation of the Navier–Stokes equation, except for the

existence of the term f FSI
i . This interaction force only exists in the overlapping region and its immediate surrounding. Its

value diminishes to zero at places outside the region (we will show details in the following section). Therefore, the two

integral terms in Eq. (9) can be combined into the entire computational domain, O, asZ
O
dvi½rðvi;t þ vjvi;jÞ � sij;j � f FSI

i � dO ¼ 0. (10)

Since the fluid is homogenous and both physical and artificial fluids are assumed to be incompressible, we can write

the complete governing equations of the fluid as

vi;i ¼ 0, (11a)

rðvi;t þ vjvi;jÞ � sij;j � f FSI
i ¼ 0. (11b)

The only deviation of Eq. (11) from the conventional Navier–Stokes equation is the term f FSI
i . In the IFEM

formulation, this term can be interpreted as the external force applied to the fluid that is generated from the artificial

fluid. The details of the discretization process for the above equations can be found in Zhang et al. (2004).

2.4. Solid domain

We first make two assumptions before proceeding to the descriptions of the solid domain. First, the solid must always

remain immersed in the fluid domain throughout each simulation. If the solid falls out of the fluid domain, the

interactions between the fluid and the solid are not guaranteed to be interpolated correctly at the interface, which will be

shown in the following section. Second, the solid has to be an incompressible material or at least a nearly-

incompressible material. Since the previous assumption states that the solid is completely immersed in the fluid and the

fluid is assumed to be incompressible, the solid must maintain the same constraint as the fluid. If the volume of the solid

changes, it forces the fluid volume to be changed as well. This, in turn, contradicts the assumption made, although it

would not be influential if the volume of the solid is significantly smaller than that of the fluid.

Both Neumann and Dirichlet boundaries can be applied at the solid boundaries. Therefore, external forces acting on

the solid, fEXT;s, such as gravity, can be easily implemented. The governing equation for the solid was derived in Eq. (5).

The solid is described using a Lagrangian formulation. A transformation is needed to convert the variables from the

current configuration or updated Lagrangian formulation, Os, to total Lagrangian formulation, Os
0. The Cauchy stress

r can be derived from the first Piola-Kirchhoff stress, P, which is determined by the material types and properties.

Transformations between stresses can be found in Belytschko et al. (2000). With dvsi=dt ¼ €usi , Eq. (5) becomesZ
Os
0

dusi ½ðr
s � rÞ €usi � ðP

s
ij;j � Pij;jÞ � f EXT;s

i �dO ¼ �
Z
Os
0

dusi f
FSI;s
i dO, (12)

or its strong form,

ðrs � rÞ €usi � ðP
s
ij;j � Pij;jÞ � f EXT;s

i ¼ �f FSI;s
i . (13)

Material descriptions determine the stress calculations in Eq. (13). Two types of materials are implemented in the

current IFEM: nearly-incompressible hyperelastic material and incompressible elastic material. We first consider an

almost incompressible hyperelastic material model with a Mooney-Rivlin material description (Wang and Liu, 2004), in

which the strain energy function W is given as

W ¼ C1ðJ1 � 3Þ þ C2ðJ2 � 3Þ þ
k
2
ðJ3 � 1Þ2, (14)
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where C1, C2, and k are the material constants and J1, J2, and J3 are functions of the invariants of the Cauchy-Green

deformation tensor C defined as Cij ¼ FimFjm.

For structures with large displacements and deformations, the second Piola-Kirchhoff stress Sij and the Green-

Lagrangian strain Eij are used:

Sij ¼
qW

qEij

and Eij ¼
1

2
ðCij � dijÞ. (15)

The first Piola-Kirchhoff stress Pij can then be obtained from the second Piola-Kirchhoff stress Sij using Pij ¼ SikFjk.

The second material type to be considered is an incompressible elastic material where Hooke’s law is used. The

generalized Hooke’s law for a two-dimensional plane stress elastic material can be written as

s11 ¼
E

1� n2
ðE11 þ nE22Þ; s22 ¼

E

1� n2
ðE22 þ nE11Þ; s12 ¼

E

1þ n
E12 ¼ s21, (16a,b,c)

where E is Young’s modulus and n is Poisson ratio. The first Piola-Kirchhoff stress tensor can be computed using

Pij ¼ JF�1ik skj , where Fik is the deformation gradient and J is its determinant.

2.5. Interpolations between fluid and solid domains

The solid and fluid meshes are constructed independently in order to avoid frequent mesh updating. By

taking advantage of the assumption of the no-slip boundary condition applied at the interface GFSI or Gs, the

solid can maintain the same velocity as its surrounding fluid. With the two independent meshes, however, it is

nearly impossible to have the moving solid boundary nodes on Gs coinciding with the nodes in O at each time step.

An interpolation function must be used to couple the fluid grid velocity vðx; tÞ and the solid nodal velocity vsðXs; tÞ
within the overlapping domain. The solid nodal positions are then updated based on the interpolated velocity

field. Likewise, the interaction force fFSI;sðXs; tÞ calculated from the solid equation, Eq. (13), is distributed onto the

nodes in the fluid domain fFSIðx; tÞ. To obtain accurate interpolations, a high-order interpolation function should be

adopted.

2.5.1. The delta function

In this section we describe in detail the construction of the delta function, d, which is used as the interpolation

function. Peskin (2002) used a Dirac delta function for the interpolations, which is a C1 order function and is suitable

for uniform fluid grids. If the fluid domain is discretized with nonuniform grids, however, this particular Dirac delta

function can no longer be valid. Instead, a more generalized delta function that satisfies the consistency condition must

be acquired. In the IFEM, we employ the interpolation function used in Reproducing Kernel Particle Method (RKPM)

(Liu et al., 1995; Li and Liu, 2002; Kim et al., 2003; Wang and Liu, 2004). As illustrated in Liu et al. (1995), both

wavelet and smooth particle hydrodynamics (SPH) methods belong to a class of reproducing kernel methods where the

reproduced function uRðxÞ is derived as

uRðxÞ ¼

Z þ1
�1

uðyÞfðx� yÞdy, (17)

with a projection operator or a window function fðxÞ.
The reproducing condition requires that up to nth order polynomial can be reproduced, i.e.,

xn ¼

Z þ1
�1

ynfðx� yÞdy. (18)

To satisfy the consistency condition, a correction function Cðx; x� yÞ is introduced in the finite domain of influence or

support, so that the window function yieldsZ
O

Cðx; x� yÞ
1

a
f

x� y

a

� �
dO ¼ 1, (19)

where a is the dilation parameter or refinement of the window function. The additional constant, a�1, scales the window

function so that the integral over the domain of support equals one. The discretized reconstruction of the delta function

can be written as

fI ðxÞ ¼ Cðx; x� yÞ
1

a
f

x� y

a

� �
Dy. (20)
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RKPM Delta function, φ(x-y), at y=0.5
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Fig. 2. RKPM delta function for dilation parameters a ¼ 0:04 and a ¼ 0:05.
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A comparison between different dilation parameters (a ¼ 0:04 and a ¼ 0:05) used in the delta function is shown in

Fig. 2. The window function, f, used here is a cubic spline. The discretized delta function values are evaluated at y ¼ 0:5
in x ¼ ½0; 1�. It clearly shows that the dilation parameter controls the size of the supporting domain or the influence

domain. The supporting domain enlarges as the dilation parameter increases. The RKPM delta function distribution,

fI ðxÞ, is also compared for uniform (Fig. 3(a)) and nonuniform meshes (Fig. 3(b)) in a 1-D domain x ¼ ½0; 1� at y ¼ 0:5.
The nonuniform mesh is generated by randomly positioned nodes. The weight of each node (i.e., the distance between

the neighboring node) is also plotted. Fig. 3(b) exemplifies a ‘‘nonsmooth’’ delta function distribution which is due to

the nonuniformity. The sizes of the supporting domains, however, are the same for both cases when the same a is used.

If the window function is chosen to be a second order polynomial, then the RKPM interpolation function can be

reduced to the Dirac delta function if uniform grid is used.

2.5.2. Velocity interpolation and force distribution

Because of its higher order accuracy and its ability in handling nonuniform meshes, this RKPM shape function is

used as the delta function to interpolate nodal velocities and nodal forces between the fluid and the solid domains. To

ensure conservation of energy, the delta functions used in both distribution and interpolation procedures must be the

same (Peskin, 2002).

The velocity interpolation in discretized form is written as

vsiI ¼
X

J

viJ ðtÞfJ ðxJ � xsI Þ; xJ 2 OfI . (21)

Here, the solid velocity vsI at node I can be calculated by gathering the velocities of its surrounding fluid nodes that

fall within the influence domain OfI ; f is the interpolation function that we defined previously for nonuniform

fluid grid. All the variables used in Eq. (21) are illustrated in Fig. 4. In particular, for each solid node I at its current

position xsI ðtÞ, we construct an influence domain OfI that covers a subset of the fluid grid nodes J positioned at xJ .

To define the influence domain for each solid point I, a search algorithm within the entire fluid domain Of is performed

at each time step for calculating the RKPM delta functions Eq. (20). By interpolating the fluid velocities onto the

solid particles using Eq. (21), the artificial fluid is bounded to the solid domain. This not only ensures the no-slip

boundary condition on the surface of the solid, but also automatically stops the fluid from penetrating into the solid

region.

A dual procedure takes place when distributing the interaction force from the solid onto the fluid. A fluid node J at

position xJ may fall into one or more influence domains OfI of the surrounding solid nodes (xsI ), as shown in Fig. 5.

Therefore, the interaction force calculated at each solid node contributes to a portion of the force at each surrounding

fluid node. The distribution function can be expressed in the discretized form as

f FSI
iJ ¼

X
f FSI;s

iI ðXs; tÞfI ðxJ � xsI Þ; xsI 2 OfJ . (22)

I
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RKPM Delta function, φ(x-y), at y=0.5
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Fig. 3. RKPM delta function for (a) uniform grid and (b) nonuniform grid.
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2.6. Summary

This section summarizes the entire algorithm along with the assumptions made throughout the derivation. The

assumptions are: (i) the fluid is incompressible; (ii) the solid is an incompressible or nearly incompressible material; (iii)

the solid must remain completely immersed in the fluid throughout the simulation; and (iv) no-slip boundary condition

is applied at the fluid-structure interface.

Finally, with the variables in the solid domain Os defined using a Lagrangian description and the fluid domain O
using an Eulerian description, we can summarize the governing equations as well as the interpolation and distribution

processes as follows:

f FSI;s
i ¼ �ðrs � rÞ €usi þ ssij;j � sij;j þ ðrs � rÞgi; in Os, ð23aÞ

f FSI
i ðx; tÞ ¼

Z
Os

f FSI;s
i ðXs; tÞfðx� xsðXs; tÞÞdO, ð23bÞ

rðvi;t þ vjvi;jÞ ¼ sij;j þ f FSI
i ; in O, ð23cÞ

vi;i ¼ 0; in O, ð23dÞ

vsi ðX
s; tÞ ¼

Z
O

viðx; tÞfðx� xsðXs; tÞÞdO, ð23eÞ

us;nþ1
i ¼ vs;nþ1i Dt. ð23fÞ
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Fig. 4. Definitions used in velocity interpolation process.

Fig. 5. Definitions used in force distribution process.
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An outline of the IFEM algorithm with a semi-explicit time integration is illustrated as follows:
(1)
 given the structural configuration xs;n and the fluid velocity vn at time step n,
(2)
 evaluate the nodal interaction forces fFSI;s;n at solid material points, using Eq. (23a),
(3)
 distribute the material nodal force onto the fluid lattice, from fFSI;s;n to fFSI;n using delta function Eq. (23b),
(4)
 solve for fluid velocities vnþ1 and pressure pnþ1 implicitly using Eqs. (23c) and (23d),
(5)
 interpolate the velocities in the fluid domain to the material points, i.e., from vnþ1 to vs;nþ1 as in Eq. (23e), and
(6)
 update the positions of the solid using Eq. (23f), then go back to step 1.
Remarks
(i)
 Unlike conventional solid solvers which have the displacement field as the unknown, the IFEM solid equation has

the interaction force, fFSI, as the unknown and the displacement is updated through the interpolation of the fluid
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velocity. The Navier–Stokes equations can be solved as usual, where the variables of interest are pressure p and

velocity v.
(ii)
 This straightforward algorithm can be easily implemented. One who possesses a fluid code and a solid code can

simply combine them and solve fluid-structure interaction types of problems. The interpolation and distribution

processes are the only additional algorithms that need to be implemented.
(iii)
 With appropriate adjustments in the governing equations, this IFEM concept can be applied to other types of

interaction problems as well, such as multiphase flows.
(iv)
 Based on a number of numerical tests, the fluid grid spacing has to be approximately twice that of the solid to avoid

fluid sinking through into the solid domain (Gay et al., 2006). Although this criterion need not to be followed as an

exact measure since grids are not required to be uniformly spaced, a general rule of thumb is to keep the fluid grid

spacing larger, but not so large as it may decrease the accuracy.
(v)
 Even though the fluid domain itself can be solved implicitly, the interpolation of the velocities and the distribution

of the forces are performed explicitly using the delta function. This restricts the time step size involved in the

simulations. Consequently, as the solid material gets more rigid, the time step has to be smaller. Thus, a fully

implicit version of this algorithm has been developed (Wang, 2006); but it is a compromise between small time steps

and increased number of convergence iterations at each step.
3. Numerical examples

In this section, two numerical examples are investigated to validate the computational algorithm. The first example

studies the motion of a soft disk falling in a viscous fluid. The second example studies the motion of a two-dimensional

leaflet under various sinusoidal fluid flow conditions.
e 1

and material properties and dimensions used in Example 1 (disk falling in a channel)

domain Soft disk

2:0 cm d ¼ 0:5 cm
5:0 cm rs ¼ 3:0 g=cm3

1:0 g=cm3 E ¼ 10 000dyne=cm2

1:0dyne=cm2 s n ¼ 0:3

Fig. 6. A soft disk falling in a channel.
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3.1. A soft disk falling in a viscous fluid

We study the motion of a soft disk falling in an incompressible viscous fluid due to gravity. Using this simple

verification problem we shall draw a detailed overview diagram to illustrate how the IFEM algorithm proceeds from

one step to another in both fluid and solid domains.
3.1.1. Problem description

We consider a 2-D soft (deformable) disk of diameter d ¼ 0:5 cm located in a 2-D channel of width W ¼ 2:0 cm.

The disk is described using an elastic model with Young’s modulus E ¼ 104 dyne=cm2, Poisson ratio n ¼ 0:3 and

density rs ¼ 3:0 g=cm3. This deformable disk is fully immersed in a Newtonian incompressible viscous fluid with

density r ¼ 1:0 g=cm3 and viscosity m ¼ 1:0 dyne=cm2 s. The defined parameters and material properties are

summarized in Table 1. Initially, the disk is placed at the top of the fluid domain and both the disk and the fluid

are at rest, i.e., v ¼ 0 and vs ¼ 0 at t ¼ 0, as shown in Fig. 6. Quadrilateral elements are used to discretized both fluid

and solid computational domains. The disk has 414 elements and 447 nodes and the fluid domain 2000 elements and

2121 nodes.
Fig. 7. Steps of the IFEM algorithm.
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3.1.2. Illustrative description of the IFEM algorithm

Fig. 7 shows in detail the computational steps of the IFEM outlined in Section 2. Fig. 7(a) shows the

solid configuration at time t. The nodal interaction forces for the solid material points are then computed as

shown in Fig. 7(b) using Eq. (23a). These interaction forces are distributed onto the surrounding fluid (Fig. 7(c)) using

Eq. (23b). Velocity and pressure (Fig. 7(d)) are solved using the Navier-Stokes equations at the following time step

tþ Dt using Eq. (23c) and Eq. (23d). Using the velocity interpolation function detailed previously in Eq. (23e), the fluid

velocity is interpolated onto the solid nodes (Fig. 7(e)). Finally, the solid displacement and new configuration can be

updated with the interpolated velocity using Eq. (23f), as shown in Fig. 7(f). This process is then repeated for the next

time step.
3.1.3. Results and discussion

Due to the effect of gravity, the disk accelerates downward and eventually reaches its terminal velocity.

A small Reynolds number is assumed; therefore, the tube is large enough compared to the disk size to ignore the

wall effects. The deformation of the disk is symmetric, as expected, and is due to the viscous effect along the

interfacial boundaries. Fluid recirculations are generated along the fluid-structure interface, which correspond directly

to the deformation of the disk. The fluid recirculation and the solid deformation at different time steps are shown in

Fig. 8.

For a very flexible object moving in a viscous environment, the proposed IFEM algorithm can capture both the

normal and shear stress distributions of the moving solid at different time steps. The normal (sxx and syy) and shear

(sxy) stress distributions are presented in Fig. 9. Comparing with the normal stress, this moving deformable disk

experiences a significant shear.

In order to determine the accuracy of the IFEM, we compare the terminal velocity of the disk with an empirical

solution of a rigid disk falling in viscous fluid (Clift et al., 1978). The terminal settling velocity ut of a rigid disk under

gravity is given by

ut ¼
ðrs � rÞgr2

4m
ln

L

r

� �
� 0:9157þ 1:7244

r

L

� �2
� 1:7302

r

L

� �4� �
, (24)

where r is the radius of the disk and L is half the width of the fluid domain (L ¼W=2). Fig. 10 compares the velocity

history of the deformable disk and the terminal velocity of the rigid sphere. This clearly shows that the deformation of

the solid structure has an effect on the terminal velocity. The flexibility of the disk decreases the surrounding fluid force
Fig. 8. Fluid velocity field and disk deformation at different time steps.
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Fig. 9. Stress distributions on the soft disk at different time steps.
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(viscous shear), thus increases the magnitude of the terminal velocity. The Reynolds number for a disk in a viscous fluid

is defined as

Re ¼
rutd

m
. (25)

Thus, a corresponding Reynolds number of Re ¼ 0:2 is reached in this simulation, which validates the assumption of

small Reynolds number made initially to avoid wall effects during the falling of the disk.

3.2. Leaflet driven by a sinusoidal fluid flow

This example analyzes large, complex, and time-dependent deflections of a thin flexible body driven by viscous fluid

flows with time-varying inflow boundary conditions. This type of problem is of great importance in solving realistic

biomechanical problems, such as the opening and closing behavior of aortic heart valves, which involve delicate

interactions between blood flow and heart-valve leaflets (de Hart et al., 1998).

3.2.1. Problem description

The leaflet investigated in this section is a thin two-dimensional rectangular shaped solid with length l ¼ 0:8 cm and

width t ¼ 0:0212 cm immersed in a 2-D rectangular fluid domain of size H ¼ 1:0 cm and L ¼ 4:0 cm. The leaflet is

assumed to be linear elastic with Young’s modulus E ¼ 107 dyne=cm2, Poisson ratio n ¼ 0:5, and density

rs ¼ 6:0 g=cm3. The Newtonian incompressible viscous fluid has density r ¼ 1:0 g=cm3 and viscosity

m ¼ 0:1 dyne=cm2 s. The material properties and parameters used in this example are summarized in Table 2. The
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leaflet structure is fixed at one end at the mid-length of the fluid domain. This fixed boundary condition is enforced by

connecting a series of tether points to the fixed points (Arthurs et al., 1998; Dillon et al., 1996). Initially, the leaflet is at

rest, i.e., vs ¼ 0 at t ¼ 0. A sinusoidal input velocity Uin ¼ sinðptþ p=2Þ with an amplitude of 1 cm/s and period of

t ¼ 2 s is applied at y ¼ 0 and y ¼ L, the bottom and top of the fluid domain, respectively. The no-slip boundary

condition is applied along the right side of the fluid domain, i.e., vs ¼ 0 on x ¼ H. Along the left side of the fluid

domain, the velocity in the horizontal direction is set to zero, i.e., vx ¼ 0, to represent a symmetry condition.

Geometrical parameters and the input fluid velocity profile are shown in Fig. 11. Quadrilateral elements are used to

discretize both fluid and solid computational domains. The solid structure has 456 elements and 575 nodes and the fluid

domain 2500 elements and 2626 nodes.

3.2.2. Results and discussion

The motion of the leaflet is examined at different Strouhal (St) and Reynolds (Re) numbers. They are defined as

follows:

St ¼
H

Ut
and Re ¼

rUH

m
, (26)

where U is the characteristic velocity (mean velocity), H is the characteristic length (channel height), and t is a

characteristic time (period). Fig. 12 shows the leaflet motion and velocity profile at different time steps for Re ¼ 1:0 and
St ¼ 1:0. Starting from its initial position, the leaflet tip is pushed upward and the body tilted along with the direction of

the flow until the flow velocity reaches its maximum. As soon as the flow starts to decrease, the leaflet flexes back due to

its elastic property. Once the flow reverses its direction, the leaflet accelerates again, and eventually reaches a fully

deflected configuration when the flow reaches its maximum in the opposite direction. This pattern repeats itself for every

period. The leaflet motion follows the same behavior as the ones obtained from Baaijens (2001) and Yu (2005) using the
Table 2

Fluid and material properties and dimensions used in Example 2 (leaflet in a channel)

Fluid domain Leaflet

H ¼ 1:0 cm l ¼ 0:8 cm
L ¼ 4:0 cm t ¼ 0:0212 cm

r ¼ 1:0 g=cm3 rs ¼ 6:0 g=cm3

m ¼ 0:1dyne=cm2 s E ¼ 107 dyne=cm2

n ¼ 0:5
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Fig. 10. Terminal velocity comparisons between a soft and a rigid disk falling in a channel.
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Fig. 12. Leaflet motion and fluid velocity profile (Re ¼ 1:0 and St ¼ 1:0) at different time steps.
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Fictitious Domain method. This sequence of movements clearly demonstrates the fluid-structure interaction capabilities

of the IFEM. The effects of varying Strouhal and Reynolds numbers on the leaflet motion are shown in Figs. 13 and 14.

Fig. 13 shows the tip displacements of the leaflet at Reynolds numbers of 1 and 10 and Strouhal numbers of 1 and 0:5.
As the Reynolds number increases, the leaflet displacement and velocity increase. On the other hand, the

Strouhal number does not affect the magnitude of the tip velocity of the leaflet, as shown in Fig. 14; it is only

influenced by the Reynolds number. At higher Strouhal number (St ¼ 1:0), the solid structure cannot reach a fully open

position as it does for lower frequencies (St ¼ 0:5) due to the lack of time needed for the leaflet to reach a maximum

flexed position. Therefore, the maximum leaflet displacement at St ¼ 1:0 is lower than the maximum displacement

reached at St ¼ 0:5.
4. Conclusions

In this paper, we derived in detail the Immersed Finite Element Method and showed its major advantageous features

in solving complex fluid-structure interaction problems. With the use of a higher order interpolation function, both the
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fluid and solid domains are capable of handling arbitrary geometries and boundary conditions. The IFEM is a major

advancement in studying fluid-structure interactions, especially for immersed deformable objects. Detailed stress

distributions, which are difficult to obtain experimentally or with the use of other computational methods, can now be

analyzed using the IFEM.
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